
Serial-TCP/IP bridge

Petr Zemek
xzemek02@stud.fit.vutbr.cz

2009-03-06

Abstract

This document describes design and implementation of a serial-TCP/IP bridge, implemented for our school course
named “Data Communications, Computer Networks and Protocols”. It is a concurrent TCP/IP server written in C++
that accepts incoming client connections and resends received messages (text/binary) to the serial port. It also resends
messages from the serial port to all connected clients. The bridge is fully configurable via a simple text configuration
file.

Keywords

Serial port, TCP/IP, bridge, concurrent server, C++.

1 Introduction

Regardless of the lack of the serial port [7] on most of the current computers for masses, it is still useful – mostly
because of its simplicity. For example, it is used to update firmware on various consumer devices, for microcontrollers
programming and connecting various devices like mice, printers and modems to a computer. It is also used for network
devices configuration, like routers.

One typically communicates with the serial device directly through the serial port via a locally installed computer
terminal emulator, which has the disadvantage that one has to be physically working with the terminal. But what if
one needs to configure some router remotely from the Internet? This is the situation where the serial-TCP/IP bridge
comes handy.

Figure 1: The role and position of the serial-TCP/IP bridge.

Figure 1 shows how it works. If there is a server on which a serial-TCP/IP bridge is running, one can connect
to that bridge via telnet or netcat from the Internet and communicate with the serial device remotely. The bridge
resends everything from the client to the serial port and when there is a message from the serial device, it resends it
to the client.

The following sections describe design and implementation of such a serial-TCP/IP bridge. Program usage is also
included.

2 Project design

This section describes the project design. First there is an overall view on the classes used in the project, then the
concurrent behaviour of the server is discussed and finally the way how errors are handled is given.

1

2.1 Overall design

Figure 2: Overall class diagram.

Figure 2 shows the overall class diagram. The ConfigParser class is used to parse a bridge configuration file
into an object (see the implementation part) which is then used to create instances of two configuration classes: the
SerialConfig, which is used to setup the serial port and the TCPIPConfig, which is used to configure the TCP/IP
part of the bridge. This part is represented by the TCPIPServer class, which accepts client connections to the bridge,
which are represented by the TCPIPConnection class. The ConnectionData class is used to store a connection (along
with other information) with input and output buffer, which are represented by the SharedBuffer class.

2.2 Concurrent server behaviour

Figure 3: How the concurrent behaviour is achieved.

One part of the assignment was that the bridge must be concurrent, i.e. it has to be able to serve more than one
client at a time. To achieve this, I decided to implement a threaded bridge, so it has a main thread which accepts
client connections and creates one thread per connection. Figure 3 depicts this kind of a solution.

Note that there is also a separate thread for the communication with the serial port. The main thread also transfers
messages between connection buffers, so when there is a message in the serial connection output buffer, it copies that
message to each client connections input buffer. The same actions are taken in case of a new message in a client
connections output buffer (the message is transferred to the serial connections input buffer).

2

2.3 Error handling

Figure 4: Exceptions hierarchy.

As for the error handling, I decided to use exceptions and I created a separate exception for each area of problems
(connection-related problems, threading problems etc.). Figure 4 shows the exception classes hierarchy in detail.

3 Project implementation

The bridge is implemented in C++ using the standard C library and C++98 library (with STL) with GNU and
POSIX extensions. The implementation details of all project parts follows.

3.1 Main program

When the bridge is started, the passed configuration file is parsed by the ConfigParser class. Since the grammar for
the configuration file is regular, I implemented it as a simple state machine. The parsed configuration file is stored
into an associative array (option name ⇒ raw option value) and this array is then used co create configurations for
the serial part and the TCP/IP part. Each configuration class (SerialConfig and TCPIPConfig) gets from the array
only options that are relevant to that class purpose, parses them, checks their validity (there are several restrictions,
like the port number must be a natural number between 1 and 65535) and stores them. If some option is missing,
default values are used instead.

If both configurations are valid, instances of the SerialConnection and TCPIPServer classes are created and
the server starts accepting connections. When there is a new connection, the server creates an instance of the
TCPIPConnection class and puts it into an instance of the ConnectionData class, which is then stored into the
connection data container. The acceptance is nonblocking, so the bridge is also able to transfer messages between
buffer as was described in section 2.2, which is (apart from the connection acceptance part) the second most important
part of its job (it is fast so it does not cause any problems with new connections).

When there is an error or a request to stop the server (by sending a signal to the bridge, like SIGTERM), it breaks
the main loop, correctly ends all connections and exits.

3.2 TCP/IP part

The TCP/IP part of the bridge (client connections acceptance, settings and communication) is using UNIX sockets
and was implemented according to [5].

To start listening and accepting connections, the TCPIPServer class uses functions socket() and fcntl() (to
create and setup a socket), setsockopt() (to set port reusing), bind() (to bind the address to the socket), listen()
(to create a client connection queue) and accept() (to accept an iccoming client connection). The IP address of a
network interface address is get by using the ioctl() function. To make all operations nonblocking, fcntl() is used.

The TCPIPConnection class uses functions send() and recv() to send messages and receive them. Messages are
stored into a buffer of a size that is specified in the TCP/IP part of the configuration.

3

3.2.1 Extensions, restrictions and things to note

The configuration option length field can be maximally 4 bytes, because there are is no equivalent of the function
ntohl() for a number with more bytes than 4.

Connection timeout is reseted not only when a message is received, but also if a message is sent (to allow large
data transfers).

3.3 Serial part

The serial part of the bridge (serial port settings and communication) was implemented according to [3], [2] and [6].
The SerialConnection class uses functions open() (to open the serial device), tcgetattr() and tcsetattr()

(to set the serial port). To make all operations nonblocking, fcntl() is again used. Messages are received from the
serial port by calling read() and sent by calling write().

3.3.1 Extensions, restrictions and things to note

Because there seems to be no way how to set 1.5 stop bits on Linux, this number of stop bits is not supported. Mark
and space parity is set using an undocumented flag CMSPAR [4].

3.4 Threading part

As for the implementation of the threading behaviour, POSIX threads were used and [1] was used as the main
information resource.

After a connection is created (does not matter whether it is a TCP/IP connection or a serial port connection), a
handler (new thread) for that connection is created using the pthread create() function. There is a loop in that
handler, in which the thread checks whether the connection should be closed (expired connection timeout; uses time()
to get the current time). If so, then it closes that connection and signals to the main thread that this connection
should be removed from the connections container and exits. After that, it checks whether there are is a message to
be received and if so, it receives it and put it into the output buffer. If there are any messages in the input buffer, it
sends the first one (only one message is sent in a single loop pass).

Note that both buffers (input and output) can be accessed from the connection handler and also from the main
thread, so the operations on these buffers have to be synchronized. To achieve this, functions pthread mutex init(),
pthread mutex lock(), pthread mutex unlock() and pthread mutex destroy() are used. To ensure proper message
removal from both buffers, messages are stored in a pair (message, ID) and a message can be removed from the buffer
by its ID.

4 Program usage

First you need to compile the program, so run make in the project directory. After the compilation you can start the
server by running:

./bridge -f CONF FILE PATH

where CONF FILE PATH is a configuration file path. An example of the configuration file is provided in the project
directory (bridge.cfg). The running server can be stopped by pressing Ctrl+C (when the server is running on
foreground) or sending a SIGINT or SIGTERM signal (when the server is running on background) with kill -SIGTERM
‘pidof bridge‘.

If the server was configured properly, you should be able to connect to it by using nc (netcat; nc interface port)
or simply telnet (telnet interface port).

5 Conclusion

All specifications from the assignment were observed and satisfied during the project development. Main parts were
designed considering possible future development and extensibility, like adding new configuration options, adding new
methods of data receiving or sending and lowering the CPU usage. The application was successfully tested on the
faculty server merlin (CentOS 5, 2.6.16, x86-64) and on my two systems (Debian 5.0, 2.6.28, x86-64 and Kubuntu
8.04, 2.6.24, x86-32). Unit testing suites (63 tests in total) for some classes were written using the CPPUnit library
and run regularly. Memory leaks were also taken into account and tested with valgrind (<http://valgrind.org/>)
and no memory leaks were discovered (even in case of an error).

4

Used libraries

Standard C library and C++98 library (with STL) with GNU and POSIX extensions
CPPUnit for unit testing (<http://cppunit.sourceforge.net/>)

Metrices

Source files: 35
Source lines of code: 4029 (without empty lines)
Executable file size: 1.1 MB (GNU/Linux x86-64, g++ 4.3.2)

References

[1] Barney, B.: POSIX Threads Programming. 2009, [Online; visited 2009-03-06].
URL <https://computing.llnl.gov/tutorials/pthreads/>

[2] Iannella, A.: Linux Serial Port Programming Mini-Howto. March 1997, [Online; visited 2009-03-06].
URL <http://slackware.osuosl.org/slackware-3.3/docs/mini/Serial-Port-Programming>

[3] Lawyer, D. S.; Hankins, G.: Serial HOWTO. December 2008, [Online; visited 2009-03-06].
URL <http://tldp.org/HOWTO/Serial-HOWTO.html>

[4] Lochmatter, T.: Linux and MARK/SPACE Parity. 2008, [Online; visited 2009-03-06].
URL <http://www.lothosoft.ch/thomas/libmip/markspaceparity.php>

[5] Richard, S. W.: UNIX Network Programming: Networking APIs: Sockets and XTI. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 1997, ISBN 013490012X.

[6] Sweet, M. R.: Serial Programming Guide for POSIX Operating Systems. 1999, [Online; visited 2009-03-06].
URL <http://www.c-program.com/pdf/serialPort_Programming_c.pdf>

[7] Serial port. In Wikipedia - The Free Encyclopedia, WIKIMEDIA Foundation, March 2009, [Online; visited
2009-03-06].
URL <http://en.wikipedia.org/wiki/Serial_port>

5

