BRNO UNIVERSITY OF TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY

A

BubbleShoooooter

Computer Graphics project

Ondrej Lengal, xlenga00@stud.fit.vutbr.cz
Libor Pol¢ak, xpolca03@stud.fit.vutbr.cz
Boris Prochéazka, xproch63@stud.fit.vutbr.cz
Petr Zemek, xzemek(02@stud.fit.vutbr.cz

2008

mailto:xlenga00@stud.fit.vutbr.cz
mailto:xpolca03@stud.fit.vutbr.cz
mailto:xproch63@stud.fit.vutbr.cz
mailto:xzemek02@stud.fit.vutbr.cz

Contents

1

2

Introduction
Project presentation
Game controls

Design and implementation

4.1 Graphical user interface
4.2 Game coreo
4.3 Graphical environment

4.4 Open Inventor graph and changes in time
Project management

Conclusion

S

0o =~ & R

1 Introduction

This is a project documentation for BubbleShoooooter, a Computer Graphics project. The task
was to create a computer game using the Openlnventor library. Our solution is a 3D variation of a
popular GNU/Linux game called Frozen-Bubble (http://www.frozen-bubble.org). The principles
of the game are following: the player is in front of a structure of static bubbles with various appearance;
the task of the player is to use her bubble cannon to destroy the aforesaid structure. This can be done
using one property of the bubbles — when there is a chain of given number of bubbles, all bubbles in
the chain disappear.

2 Project presentation

Each game is situated in some environment containing a play box, in which there is an avatar who
launches bubbles towards the rear wall of the play box. The wall is moving towards the avatar in
time. The goal is to remove all bubbles from the play box (before the wall hits the avatar) by shooting
them on each other. When there are more than two bubbles of the same colour connected, the whole
bubble chain disappears. Also, when some bubble happens to be not connected to other bubbles, it
falls down and vanishes. User can choose different environments, play boxes and avatars (see example
game screenshots).

The first game screenshot gives an overall game overview and shows the default environment
(“Space”) with “Snowman” avatar.

The second game screenshot shows a different environment (“Wire”), different avatar (“Tux”) and
an explosion of a chain of green bubbles that were connected together.

http://www.frozen-bubble.org

The last screenshot shows yet another environment (“Album”), special “tunnel-like” play box and
the bubble launching hammer in detail.

3 Game controls

Our game is really easy to control. Aiming (camera rotation) is done via mouse movement and
to shoot a bubble, simply click the left mouse button. When you start a game, the mouse cursor is
“captured” by the application, so you have to press the Escape key (Esc) to “release” the cursor.

4 Design and implementation

Basic implementation ideas and techniques are based on [1].

4.1 Graphical user interface

MainWindow

MainMenu RenderWindow | |GameMenu

MainWindow represents the main window of the application. It is divided into two parts. The
application menu and the playground. The application menu is implemented by MainMenu. The
playground is used to show running game, new game options or additional game information. The
Render Window builds the game scene. It creates camera, passes game options into Scene and registers
callbacks that handle application events. The GameMenu creates new game menu, which is used to
set game options (environment, avatar, difficulty etc.).

4.2 Game core

Scene represents the core of the game. It is designed to be a connection link between the GUI
(main window, new game settings etc.) and the game itself. The Scene handles all communication

Scene

fire()

_ PlayField
Environment
fire()
launchBubble()

Camera Ava::\\\\\\\\\\\\\
updateWiew() PlayBoxGraphics
get/setAngle() BubbleGenerator
get/setRotation() generateBubble()

BubbleField PlayBoxPhysics
generateStartingLayout() moveBubble ()
addBubble()
isinCollision()

between the game core and the GUL. It resends user commands (such as firing a bubble) and requests
for update in time in one way and ends the game in the other way.

Scene stores pointers to two very important objects. The first one is Environment (see subsection
4.3), which represents the graphical surroundings like stars, the Earth and the Moon in SpaceEnuvi-
ronment. The second one is named PlayField and it takes care of the game itself.

Main objects in the game are bubbles, which are instances of a class called Bubble. Bubbles are
divided according to their type. Every type has assigned one colour and one type of explosion. Bubbles
are able to change their position in the scene, change the direction of movement and explode when
corresponding methods are called.

Explosion

clone()
explode()
setPosition()

[FireExplosion| [FadingExplosion|
I | I |
[1 [1

Each Explosion is able to clone itself (for copying reasons), set its position (the place for the
explosion effect) and explode. The effect of the FireExplosion resembles a blast from a cannon and
it is implemeted as a sprite (two-dimensional image integrated into the scene that is always turned
directly to the Camera), while the effect of the FadingFEzplosion is a simple fadeout accomplished by
modification of bubble transparency.

PlayField is responsible for the coordination of all objects that create the game experience. It
stores pointers to PlayBoxzGraphics, PlayBoxPhysics, BubbleField and BubbleGenerator. PlayField
calls their methods when necessary.

PlayBoxGraphics (see subsection 4.3) is responsible for generation of a graphical representation of
the PlayField (i.e. the walls of the playing field), while PlayBoxzPhysics controls the flying bubble and
properly adjusts its position and direction after it hits one of the walls. This implementation provides

PlayBoxPhysics
I

I —
57 7 EY.

[BasicPlayBox | [AdhesivePlayBoxPhysics| [RandomPlayBoxPhysics |
I T il |
[1T 1 [1

an option to change the look of the PlayField and its physical behaviour independently.

BubbleField

generateStartingLayout()
addBubble()
isinCollision ()

Bubble

clone()
colidesWithBubble()
explode()
enableTransparency()

disabIeTrarjslparencyl[) Gl
get/setPosition()
get/setMotionVector() clone()

getSpeed() explode()
getRadius() setPosition()

BubbleField stores all bubbles that have hit the rear wall or another bubble that was added to the
BubbleField earlier. The bubbles in the BubbleField are divided into plates of two different sizes —
odd plates are a matrices of n - n positions and even plates are matrices of (n — 1) - (n — 1) positions
(starting with a plate number 1). In this way, the bubbles can be stacked on top of another bubbles
in the same way that eggs can be stacked in an egg carton. The first plate is connected to the rear
wall, the second one is stacked on the first one towards the player avatar and so on.

When a new bubble is about to be added to the BubbleField, the nearest empty position to the
position where the bubble has collided is chosen. The bubble is moved to its new position and it is
checked if the just added bubble has been connected to more bubbles of the same type. In case this
happens, all bubbles in the chain are ordered to explode and all bubbles that become unconnected
with the rear wall are removed from the game.

Every bubble is generated in the BubbleGenerator, which creates an initial set of bubbles in the
beginning of the game. The number of bubbles’ types can be changed in the “New game” menu.
The type of every bubble, which can be seen in the PlayField itself or in the BubbleField, is chosen
randomly and the original bubble of that type is then cloned and the clone is added to the game.

In the beginning of the game, the PlayField is responsible for filling the BubbleField with bubbles
according to the parameters which has been set in the “New game” menu. After the BubbleField is
initialised, bubbles are added only when the player fires one. The motion vector of the fired bubble is
set according to the position of the camera.

The player is in the game represented by their avatar (see subsection 4.3), which changes its
behaviour according to the movement of the camera (for this purpose, camera implements the observer
design pattern [2]). When the fire button is pressed, the avatar hits the waiting bubble and it begins
its journey towards the rear of the BubbleField.

When one of the conditions which ends the game is fulfilled, the PlayField detects it and ends
the game. The game is ended successfully when all bubbles have been removed from the BubbleField.

However, if the starting position for the bubbles is in collision with a bubble in the BubbleField, the
game is lost.

4.3 Graphical environment

In order to support modular design, the graphical representation of the play field is divided into
two parts — the FEnvironment and the PlayBoxr. Due to the fact that these objects generate the
major percentage of graphics displayed on user screen, it affects the user’s experience in a crucial way.
Therefore, it has been given considerable attention.

Environment

N T

AlbumEnvironment| |SpaceEnvironment | | WireEnvironment

Environment is a graphical background that causes no interaction with the player. Currently, there
are three environments present:

e Space — this environment tries to evoke the feeling of the player being situated in outer
space. The background is created by a skybox (that is a box surrounding the player) with a
star texture. This texture is generated on-line using a random number generator. A more
immersive experience is achieved by dynamic objects of the Earth and the Moon. Both of
these objects revolve, so the user experience is much better.

e Wire — a very dynamic environment with moving patterns.

e Album — this is a generic environment that creates a skybox where the wall textures
are loaded from user modifiable album, therefore the user is able to substitute the default
images with her own.

PlayBoxGraphics

BasicPlayBoxGraphics TunnelPlayBoxGraphics

Play box is a graphical representation of the playing field, where the game takes place, so that the
user can see the source of the object interaction in the scene. Currently, two play boxes are
present:

e Basic — A basic semi-transparent play box.

e Tunnel — A play box with a visual effect resembling a trip through a tunnel. The feeling
of movement is achieved by a movement of a texture with various coloured transitions and
exploitation of correct texture mapping (repeating [3]). The texture is generated on-line
as a 1-pixel-wide line of pixels that create a transition between two RGBA colours. The
transition is a linear interpolation of all colour components (including the alpha component)

of both colours (i.e. red, green, blue and alpha) and the colours are easily substitutable with
different ones. Movement of this texture on the surface of the tunnel then creates a feeling
of movement through the tunnel.

Avatar

fire()

SnowmanAvatar ModelAvatar

Another very important graphical element of the scene is the Awatar, which is an object in the
scene that represents the player of the game. Similarly to the abovementioned graphical elements of
the environment, this one also uses modular design to enable good maintainability and modification.
Two avatar types are currently present:

e Snowman — a complex model of a snowman. The snowman is built up from 3 snowballs (the
body), 2 more snowballs (hands), 2 eyes, a mouth and a carrot (i.e. nose). An ice glitter effect
was added to better simulate material properties of snow.

e Model — this is a generic avatar, that can have the form of any model loaded from an external
file. Currently, a model of a penguin called Tux is used.

A part of the avatar is also so-called Bubble Hammer. This is the object that makes the movement
of bubbles possible (as perceived by the player).

4.4 Open Inventor graph and changes in time

In order to handle the creation of the Open Inventor graph and to change it in time, two interfaces
have been created.

Every class, which was designed to create objects with a graphical representation, is inherited
from the GraphicalNode. Instances of these classes have their own SoSeparator or SoGroup, which
are connected to the Open Inventor graph to their positions. SoSeparator is used when the object is
transformed in some way, so other objects are not affected by operations which are done below the
SoSeparator.

Classes, which can be updated in time because the instances of the class are moving or changing
their states in some way, implement the TimeUpdatable interface, which has one virtual method that
takes the time which is passed from the last call as a parameter.

5 Project management

Our team consists of four members. We identified the following main tasks of the application
which had to be taken care of:

e graphical user interface, controls and connection with the main scene,
e functional aspect of the game,

e graphical aspect of the game, and

e individual application parts’ interoperability.

Boris Prochdzka took care of the graphical user interface (GUI), camera, game controls and con-
nection between the GUI and the rest of the application. Libor Polc¢dk’s main area of interest was
the functional aspect of the game, such as bubble shooting and motion, physics and correct play field
behaviour (“glueing” bubbles together on collisions and bubbles removal). Ondiej Lengdl’s special-
ization was the game graphics (in general), which includes the game environment, play box and the
avatar. Petr Zemek was the team leader, who created the program skeleton and who was responsible
for the overall functionality and cooperation of various application parts, i.e. the main scene and its
components.

Because the overall project complexity required good design preparation, we had several team
meetings where we were discussing the program design and where we were able to develop the ap-
plication together. This was a huge advantage, because one could solve problems more quickly than
using a nonverbal form of communication. For this purpose we used areas which our faculty provides
for students.

Internet communication was also very important, because we live in different locations, so verbal
communication (except team meetings) was possible only during the breaks between our lectures.
For this purpose we used IRC and XMPP (Jabber) protocols and in order to manage our e-mail
communication, we set up a mailing list.

We followed a specific coding stadard (e.g. code layout, naming conventions etc.) based on some
widely used standards so that our source files would be easy to read and understand. As for the
application design, we exploited some parts of UML to help us convey our ideas.

6 Conclusion

All specifications from the assignment were observed during the project development. Each mem-
ber of our team was interested in the project and critical parts of the design were discussed together.
We were focusing on playability (unplayable game is useless), overall graphical appearance (this was
the main task) and clean, documented and readable source code (for easier modifications in the future),
because these parts are very important in the result. Main parts were designed considering possible
future development and extensibility, like adding new environments, play boxes, avatars, bubbles and
physical behaviour of the play box.

The application was successfully tested on the faculty computers (GNU/Linux, x86) and on our
systems (GNU /Linux, x86 and x86-64).

Used libraries

Standard C++98 library and STL

Coin 2.5.0 (http://www.coin3d.org/)

Simage 1.6.1 (http://www.coin3d.org/lib/simage/)
SoQt 1.4.1 (http://www.coin3d.org/lib/soqt)

Qt 3.3.8 (http://trolltech.com/)

Loki 0.1.6 (http://loki-1lib.sourceforge.net/)

Loki library

Copyright (c) 2001 by Andrei Alexandrescu

Permission to use, copy, modify, distribute and sell this software for any purpose is hereby granted without
fee, provided that the above copyright notice appear in all copies and that both that copyright notice and

this permission notice appear in supporting documentation.

http://www.coin3d.org/
http://www.coin3d.org/lib/simage/
http://www.coin3d.org/lib/soqt
http://trolltech.com/
http://loki-lib.sourceforge.net/

Used textures and models

Earth texture (http://www.root.cz/clanky/open-inventor-vesmirna-scena-4/)
Explosion textures (http://www.geocities.com/starlinesinc/)

Moon texture (http://www.geocities.com/cnlpepperplanet/)

Smoke texture (http://neverhood.etomite.sk/files/kourzelenej. jpeg)

Tux model (http://www.katorlegaz.com/3d_models/miscellaneous/0167/)

Metrices

Source files: 84
Source lines of code: 7703 (without empty lines)
Executable file size: 2.4 MB (GNU/Linux x86-64, g++ 4.3.2)

References

[1] Jan Peciva. Seridl open inventor. [online], 2004. Available on URL:
http://www.root.cz/serialy/open-inventor/.

[2] Kelpi Project. C++ observer implementation. [online]. Available on URL:
http://kelpi.com/script/d73d5b.

[3] Josie Wernecke. The Inventor Mentor: Programming Object Oriented 3D Graphics with Open
Inventor, Release 2. Addison-Wesley Professional, 1994.

10

http://www.root.cz/clanky/open-inventor-vesmirna-scena-4/
http://www.geocities.com/starlinesinc/
http://www.geocities.com/cnlpepperplanet/
http://neverhood.etomite.sk/files/kourzelenej.jpeg
http://www.katorlegaz.com/3d_models/miscellaneous/0167/
http://www.root.cz/serialy/open-inventor/
http://kelpi.com/script/d73d5b

	Introduction
	Project presentation
	Game controls
	Design and implementation
	Graphical user interface
	Game core
	Graphical environment
	Open Inventor graph and changes in time

	Project management
	Conclusion

